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Abstract. Certain simple models of structural glasses (Cugliandolo L F, Kurchan J, Parisi G and
Ritort F 1995 Phys. Rev. Lett. 74 1012, Parisi G 1997 Statistical properties of random matrices and
the replica method Preprint cond-mat/9701032) map onto random-matrix models. These random-
matrix models have gaps in their eigenvalue distributions. It turns out that matrix models with
gaps in their eigenvalue distributions have the unusual property of multiple solutions or minima of
the free energy at the same point in phase space. I present evidence for the presence of multiple
solutions in these models both analytically and numerically. The multiple solutions have different
free energies and observable correlation functions, the differences arising at higher order in 1/N .
The system can get trapped into different minima depending upon the path traversed in phase space
to reach a particular point. The thermodynamic limit also depends upon the sequence by which N
is taken to infinity (e.g. odd or even N ), which is reminiscent of the structure discussed for another
model for glasses (Marinari E, Parisi G and Ritort F 1994 J. Phys. A: Math. Gen. 27 7615). Hence
it would be of interest to study the landscape of these multiple solutions and determine whether it
corresponds to a supercooled liquid or glass.

1. Introduction

There has been a close connection between developments in glasses (for example, spin glasses)
and random-matrix models. In particular in [1,2], it has been shown that certain simple models
of structural glasses map onto certain random-matrix models in the high-temperature region.
These matrix models have gaps in their densities of eigenvalues. Thus a detailed study of
these random-matrix models with gaps in their eigenvalue spectra is of relevance to structural
glasses. I find that these matrix models have the unusual and new property of multiple solutions
at the same point in phase space. I provide evidence both analytically and numerically for
the existence of these multiple solutions. I then describe some properties of the multiple
solutions that differ from each other in their free energies, correlation functions and eigenvalue
distributions at higher orders in 1/N where N is the size of the matrix. The structure of the
landscape of these multiple solutions remains an open question, a study of which would help
identify correspondences with glass or supercooled liquid behaviour.

In section 2 the connection between a simple model of structural glasses and random-
matrix models is described. It is emphasized that the latter have gaps in their eigenvalue
spectra. In section 3, I demonstrate that such random-matrix models have multiple solutions
and describe the properties of these solutions. Finally, section 4 contains conclusions and open
questions.
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2. The connection of a simple model of structural glasses with random-matrix models

We begin by building up a connection between random-matrix models and the study of
structural glasses in the high-temperature phase based primarily on the work of reference [1,2].
The Hamiltonian

H = 1

n

∑
a �=b

(�sa · �sb)p

corresponds to n particles moving in an N -dimensional space, in the limit n,N → ∞. The
coordinates of the particles are �sa = (sa1 , . . . , s

a
N) where a = 1, . . . , n; the parameter p is

a real number. In the ‘spherical’ case the particles are constrained to move on the surface
|sa|2 = N , for all a. In the ± case they occupy only the vertices of a hypercube sai = ±1. The
case of p = 2 is studied.

The corresponding partition function is

Z = eβN
2

Tr{s} exp

[
− β

αN
tr(S†SS†S)

]
where S is the N ×n rectangular matrix of elements sai , and Tr{s} runs over either the spherical
or the Ising measure (at high temperature the spherical and Ising case have the same partition
function; this is shown in reference [1]). Here n = αN with α � 1. Using the large-N
equivalence with the global constraint we get for the spherical model

Zsph ≈ eβN
2
∫

dµ
∫ N∏

i=1

dxi exp

(
−N2 βµ

2
− βE[x]

)
.

The xi
√
N are the ‘diagonal’ values of S in its canonical form and E[x] where x = {xi}

gives

E[x] = N

N∑
i=1

(
1

α
x4
i − µ

2α
x2
i − (α − 1)

β
ln |xi |

)
− 1

2β

∑
i �=j

ln |x2
i − x2

j |. (2.1)

This ‘energy’ functional has a log term for the repulsion between the eigenvalues and a potential

V (xi) = 1

α
x4
i − µ

2α
x2
i − (α − 1)

β
ln |xi |

seen by each eigenvalue, analogous to the case for a Dyson gas. It is evident that V (x) has
a double-well structure for values of parameters relevant for the glass model. A consequence
of this and the repulsion is that in the large-N limit, the eigenvalues xi reside in two bands
separated by a gap. In this case the spectrum also has Z2 symmetry (xi → −xi). The matrix
model is a form of the generalized Penner model or the Penner–Kontsevich model.

These matrix models have multiple solutions at the same point in phase space,
characterized by different free energies and correlation functions. Think of the matrix model
as occupying a point in the phase space of coupling constants, which is higher dimensional
(for example, think of V (xi) as having additional terms σ1xi , σ3x

3
i , . . . ). Let us analyse the

neighbouring points in phase space and approach this point by taking the limit σk → 0 along
some path. Then one gets different solutions for the free energy and correlation functions,
depending upon the path chosen. This might mirror the path dependence of a structural glass
as it is cooled, in the same spirit as the universality of the Wigner–Dyson statistics for a
random-matrix model with respect to the phase-space point mirrors the observed universality
of eigenvalue statistics in real chaotic systems. In the large-N limit there are an infinite number
of solutions whose free energies and correlation functions differ from each other by terms of
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order 1/N . It would be interesting to explore the physical meaning of the different solutions
in terms of the glass energy landscape and their consequence for the glass transition. This
exploration is left for the future. Here I simply demonstrate the existence of these solutions.

3. Multiple solutions in matrix models with gaps

Let M be an N × N Hermitian matrix. The partition function to be considered is

Z =
∫

dM e−N tr V (M).

The Haar measure is

dM =
N∏
i=1

dMii

∏
i<j

dM(1)
ij dM(2)

ij with Mij = M
(1)
ij + iM(2)

ij .

The potential for a general Penner matrix model is V (M) = V0(M) − t logM , where V0(M)

is a polynomial and t a parameter. If V0(M) = 1
2µM

2 the model is a Gaussian Penner model
where we can rewrite logM = 1

2 logM2. This has Z2 symmetry and the potential is a double
well with eigenvalues distributed in disconnected segments. The partition function for the
Gaussian Penner model in terms of its eigenvalues xi is

Z =
∫ ∏

dxi exp[−E(x)] (3.1)

where

E(x) = N

N∑
i=1

(
µ

2
x2
i − t

2
log x2

i

)
− 2

∑
i �=j

log |xi − xj |.

This is very similar to the structure of equation (2.1), i.e. a repulsion term and a double-well
potential involving log |x|. I will show explicitly that this has multiple solutions.

It is convenient for pedagogical reasons to consider a model with a polynomial potential:

V (M) = g1M + (g2/2)M2 + (g3/3)M3 + (g4/4)M4 + · · ·.
In particular, for the symmetric M4-matrix model, g2 = µ, g4 = g and g1, g3, g5, . . . = 0.
The spectrum or the density of eigenvalues

ρ(x) = 1

N

N∑
i=1

δ(x − λi)

is in the large-N limit or doing the saddle-point analysis just the Wigner semi-circle for a
quadratic potential (Gaussian probability distribution for the eigenvalues). The simplest way
to determine ρ(x) explicitly is to use the generating function

F(z) =
〈

1

N
Tr

1

z − M

〉
.

The density ρ(x) is then determined by the formula

ρ(x) = − 1

2iπ
(F (x + i0) − F(x − i0)).

The partition functionZ can be rewritten in terms of the orthogonal polynomialsPn where
the polynomials are defined as∫ ∞

−∞
dλ e−NV (λ)Pn(λ)Pm(λ) = hnδnm
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and normalized such that Pn(x) = xn + c1x
(n−1) + · · ·. Then Z = N !h0h1h2 · · ·hN−1. The Pn

satisfy recurrence relations [4]:

xPn = Pn+1 + SnPn + RnPn−1 (3.2)

which defines the ‘recurrence coefficients’ Rn and Sn. From the Pn one can find the Rn and Sn
and vice versa. From the definition, it follows that recurrence coefficients are given by certain
integrals, e.g.

S0 = I1

I0
R0 = 0 R1 = I2

I0
−

(
I1

I0

)2

where

In =
∫

dx xne−NV (x)

and so on. In general the free energies and correlation functions can be expressed in terms
of the recurrence coefficients Rn and Sn. A set of recurrence coefficients corresponds to a
solution of the model. In particular, it follows that hn = hn−1Rn; hence the free energy is

) = lnZ = lnN ! + N ln h0 +
N−1∑
n=1

(N − n) lnRn.

The problem then reduces to finding the recurrence coefficients Rn and Sn.
The recurrence coefficients satisfy recurrence relations that follow from the identities [4]

I:
∫

dx e−NV (x)Pn(x)V
′(x)Pn(x) = 0 (3.3)

and

II: nhn−1 = N

∫
dx e−NV (x)Pn(x)V

′(x)Pn−1(x). (3.4)

For example for

V (x) = µ

2
x2 +

g

4
x4

recurrence relation I is

0 = µSn + g[Rn+1(Sn+1 + 2Sn) + Rn(2Sn + Sn−1) + S3
n]

while II is
n

N
= µRn + gRn(Rn−1 + Rn + Rn+1) + S2

n + S2
n−1 + Sn−1Sn.

These identities together with boundary conditions (S−1 = R−1 = 0, S0, R0 = 0 and
R1 = I2/I0) in principle determine the recurrence coefficients uniquely. However, one
discovers multiple solutions if one relaxes the boundary conditions, which is a physically
reasonable thing to do when V (x) has multiple wells or the spectrum has gaps, as will be
discussed below. For Z2-symmetric V (x), Sn = 0 is always a solution (we refer to this as the
symmetric solution, as it respects the Z2 symmetry of the potential). However, there can be
other solutions, depending upon the path chosen.

(1) The one-band case (no gaps in the eigenvalue spectrum), e.g.

V (M) = µ

2
M2 +

g

4
M4 with µ > 0, g > 0.

Then Sn = 0 from recurrence relation I. Recurrence relation II is
n

N
= Rn[µ + g(Rn−1 + Rn + Rn+1)]. (3.5)



Multiple minima in glassy random-matrix models 6633

For the large-N limit we make the ansatz that Rn is a smooth function of x ≡ n/N , and
expand as follows:

Rn = R(x) +
1

N
R1(x) +

1

N2
R2(x) + · · · .

Then equation (3.5) implies that x = R(x)[µ + 3gR(x)] with the solution

R(x) = 1

6g
[−µ ±

√
µ2 + 12gx].

This fits very well with the numerical evaluation of Rn which can be approximated by a
smooth curve at large N as shown in figure 1.

(2a) The two-band case (the eigenvalue spectrum has a gap), e.g.

V (M) = µ

2
M2 +

g

4
M4 with µ < 0, g > 0.

Consider again equation (3.5) with n/N → x and Sn = 0. However, the assumption of a
single smooth function describing Rn is not correct. Figure 2 shows the numerical result
for Rn which suggests that two smooth functions are needed to describe Rn (a ‘period-2’
ansatz). The following ansatz works:

Rn =



An = A(x) +

1

N
A1(x) + · · · for n even until x = x̄

Bn = B(x) +
1

N
B1(x) + · · · for n odd

Rn = R(x) +
1

N
R1(x) + · · · for all n, n > n̄ = Nx̄.

(3.6)

Substituting equation (3.6) into equation (3.5) and equating equal powers of 1/N we get,
for x < x̄ = µ2/(4g),

A(x) = 1

2g
[|µ| −

√
µ2 − 4gx]

B(x) = 1

2g
[|µ| +

√
µ2 − 4gx]

(3.7)

Figure 1. Numerical results for Rn for a single well with N = 10, µ = 1 and g = 1.
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Figure 2. Numerical results for Rn for a double well with N = 25, µ = −105 and g = 2500. Rn

for odd and even n fall on different ‘smooth curves’.

and for x � x̄

R(x) = 1

6g
[−µ +

√
µ2 + 12gx]. (3.8)

The above analytical result and numerical figure 2 agree very well.
(2b) Multiple solutions. The simplest way to understand the existence of multiple solutions

which appear in this matrix model is to consider the integral

S0 = 1

I0

∫
dx xe−NV (x).

We will approach the Z2-symmetric point in phase space by taking σ → 0 in the potential

V (x) = σx +
µ

2
x2 +

g

4
x4 with µ < 0, g > 0.

The above solution for R(x) is only one of an infinite family. The integral S0 from
[−∞,∞] approaches zero if we take σ = 0 and then take N → ∞, but if we take σ �= 0
first, evaluate the integral, then take the limit N → ∞ and afterwards σ → 0, the integral
is ±√−µ/g. This suggests to us that there may be multiple solutions in these models, as
I1 does not tend to the same limit when the limits ofN going to infinity and the asymmetry
parameter σ going to zero are interchanged.

A more precise way of establishing the presence of multiple solutions in these models is
by using the recurrence coefficients. Let us relax the condition Sn �= 0; we will find that this
will be interesting. We use the period-2 ansatz for both Rn and Sn. Then

Rn → An Sn → Cn even n

Rn → Bn Sn → Dn odd n
(3.9)

and I and II reduce to

n even: x = A[µ + g(2B + A + C2 + D2 + CD)]
n odd: x = B[µ + g(2A + B + C2 + D2 + CD)]
n even: 0 = µC + g(B(D + 2C) + A(D + 2C) + C3)

n odd: 0 = µD + g(A(C + 2D) + B(C + 2D) + D3).

(3.10)
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There are four equations and four unknowns here, but after some work we find that there are
only three independent equations. The three independent equations are

C + D = 0

A + B + C2 = −µ

g

AB = x

g
.

(3.11)

Thus there is an infinite family of solutions corresponding to one functional degree of freedom.
For example let us take the two extreme solutions:

(a) the ‘symmetric solution’: C − D = 0; then equation (3.11) implies C = D, and we
recover equation (3.8) for A(x) and B(x);

(b) the ‘maximally asymmetric solution’: A − B = 0; then equation (3.11) implies

A = B = R =
√
x

g
and C = −D =

[ |µ|
g

−
√

4x

g

]1/2

.

Both have the same tree-level eigenvalue density and free energy, as the generating function
is (see reference [5]) given by

F(z) =
∫ 1

0
dx

2z − (C + D)√
(z2 − z(C + D) − (A + B − CD))2 − 4AB

. (3.12)

This formula contains precisely the same three combinations as are fixed by the recurrence
relation equation (3.11). Therefore, independently of which solution is chosen, we get the
same F , and hence ρ and ) at large N . This demonstrates the presence of multiple solutions
from the recurrence coefficient point of view.

A numerical demonstration of the existence of multiple solutions proceeds as follows.
The recurrence relations I and II follow by extremizing an effective potential with respect to
Rn and Sn. For

V (x) = σx +
µ

2
x2 +

g

4
x4

this is given by

Veff =
∞∑
n=0

{−n

N
lnRn + µRn +

g

2
(R2

n + 2RnRn+1) + σSn +
µ

2
S2
n

+
g

4
S4
n + gRn(S

2
n + S2

n−1 + Sn−1Sn)

}
. (3.13)

A numerical solution is obtained by minimizing Veff with respect toRn and Sn. In figure 3
a particular solution is displayed which is different from the usual symmetric solution with
Sn = 0 of figure 2. Here we started with σ �= 0 and reduced σ to 0. It is seen that we
are trapped in a minimum of Veff for which Sn �= 0. This provides numerical proof for the
existence of multiple solutions. From these numerical recurrence coefficients one can evaluate
all correlation functions and free energies.

The multiple solutions found above show differences at the non-perturbative level (or
double-scaling limit), and in the correlators and eigenvalue distributions. At higher orders in
1/N the symmetric solutions satisfy the Painleve II equations while the asymmetric solutions
satisfy the modified Painleve II equation. Certain correlators are also different for these
solutions (details can be found in reference [5]). The eigenvalue distributions can also be
studied. There is a possibility that the multiple solutions differ due to one-eigenvalue effects;
their bulk effect is the same.
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Figure 3. The recurrence coefficients (a)Rn and (b) Sn for an asymmetric solution to the symmetric
double well after 100 000 minimization steps from a random start. (c) The orbit in theA−B versus
C − D plane. The parameter values are N = 512, µ = −2, g = 1 and σ = 0.1.

Furthermore, recently we studied the smoothed or long-range two-point density–density
correlation function 〈ρ(x)ρ(y)〉c (a physical correlator in these models) in reference [6] using
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the method of steepest descent. It is found that this correlator is determined up to a constant
C which cannot be fixed by the method of steepest descent. For the ‘symmetric solution’ the
constant C can be fixed; its value is (−1)N [6, 8] (this solution corresponds to first taking the
limit σ → 0 and then taking the limit N → ∞). Other values for C were found earlier using
the loop equation method [7] (where first the N → ∞ limit is taken, followed by the σ → 0
limit); this gives further support for the existence of multiple solutions in these models.

Another interesting property is that the correlation functions (for example the 〈ρ(x)ρ(y)〉c
correlator) tend to two different thermodynamic limits as we send N → ∞ along different
sequences (odd and even). This unusual behaviour was suggested as a possible scenario in the
study of systems without quenched disorder with a complex landscape in reference [3] and is
present in a related spin-glass model [9].

Now I turn to the Gaussian Penner model discussed at the beginning of this section, which
is closer to the random-matrix models that arise from a simple model of structural glasses.
As for the M4-model, we take the period-2 ansatz for the recurrence coefficients Rn and Sn
(equation (3.9)). Then the recurrence relations for the Gaussian Penner model reduce to four
conditions (two each for n even and n odd) but, as before, only three equations are independent:

C + D = 0

A + B − CD = 2x + t

µ

AB = x(x + t)

µ2
.

(3.14)

Thus again there is an infinite family of solutions labelled by one function. Let us take as
an example two extreme solutions of this infinite family of multiple solutions, the symmetric
solution and the maximally asymmetric solution. For the symmetric solution,

C = D = 0 A = x

µ
B = x + t

µ

while for the maximally asymmetric solution,

A = B +
1

µ

√
x(x + t) C2 = 1

µ
[(2x + t) − 2

√
x(x + t)].

Once again, in equation (3.14) we find the same combinations as appear in the generating
function of the Gaussian Penner model. The same three combinations as are fixed by
equation (3.14) occur in the generating function equation (3.12). Thus in the large-N limit
the eigenvalue densities and free energies are identical for the symmetric and maximally
asymmetric solutions.

In the non-perturbative region the above two solutions have different free energies
[5, 10, 11]. For the symmetric solution, as the exact recurrence solutions are known, the
exact free energy may be found to be

)sym =
N/2−1∑
k=1

k log[(2k + µ + 1)(2k + µ − 1)]

where t = −1 + µ/N . Expanding in powers of µ we get

)sym = 1

4
µ2 logµ +

1

12
logµ + · · ·.

Note that the coefficient of the second term logµ is χ1 = 1/12, which is the torus contribution.
The asymmetric solution is more difficult, but in the double-scaled limit

Rn ≈ )(1/2(N − n + µ + 3/2))

)(1/2(N − n + µ + 1/2))
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and the double-scaled free energy is

) =
N/2−1∑
k=1

k log[(2k + µ + 1/2)(2k + µ − 1/2)] + · · · .

On expanding in powers of µ, the free energy is obtained as

)asym = 1

4
µ2 logµ − 5

48
logµ + · · · .

The coefficient of the second term is 5/48. Here in the Gaussian Penner model we see that
though the symmetric and asymmetric solutions give the same answer in the large-N limit, the
free energies are very different at higher order. This establishes that in the Gaussian Penner
model this unusual phenomenon of multiple solutions is present; they give the same free energy
in the large-N limit but different ones at higher orders. Hence the random-matrix models with
gaps in the eigenvalue distributions which are related to glassy models are expected to have
this special property.

The questions that would then be of relevance to the structural glass models in the high-
temperature phase are those of what the correct free energy is in the high-temperature phase (is
it )sym or )asym or any of the other infinite answers corresponding to the multiple solutions),
and what the correct susceptibility is etc.

4. Conclusions

Connections with the high-temperature phase of a simple model of structural glasses have been
made to matrix models as discussed in references [1, 2]. These are a variant of the Penner or
Penner–Kontsevich model with two cuts. A simpler model, the Gaussian Penner model, which
has disconnected eigenvalue segments, is shown to have these unusual multiple solutions as
well. A generic toy M4-matrix model has also been studied in this context. First a simple
reason for expecting the presence of multiple solutions is given and then the formulation is
made more precise using the recurrence coefficients of the orthogonal polynomials of the M4-
model. Further, numerical evidence is given for the existence of multiple solutions in this
context. In the large-N limit the free energy, generating function and density are the same.
Differences between the multiple solutions are seen in the non-perturbative solutions as well
as the correlators, eigenvalue distributions and free energies at higher order in 1/N . The two-
point density–density correlator tends to different limits as N goes to infinity through different
sequences (odd or even). This behaviour is similar to that suggested in another model for
glasses [3, 9].

Since the ‘glassy’ matrix models of [1, 2] also have gaps in their eigenvalue spectra, it
is expected that they will also have such multiple solutions. Questions regarding what the
correct free energy or susceptibility is will have to be addressed again, as now there are many
answers. The ruggedness of the landscape and the number of multiple solutions need to be
studied. It would be nice to be able to cast these models in the replica framework, but this
remains a difficult task at this point, as the Hubbard–Stratonovich transformations which are
technically needed for the Gaussian random-matrix models [12] are not available here for the
simpleM4-model and the Gaussian Penner model or any other gapped random-matrix models.
Numerical methods also need to be explored. This is a future goal in this problem.
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